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Abstract
Purpose Medulloblastoma (MDB) is a small cell poorly differentiated embryonal tumor of the cerebellum, which more frequent-
ly compromises children. Overall prognosis is favorable, but dependent of stage, histopathological pattern and molecular group.
Approximately 30% of the affected patients will die from the disease. WHO 2016 Classification of Tumors of the Central
Nervous System (CNS) has been classified MDB into four principal groups: WNT-activated MDB, SHH-activated MDB, group
3 MDB, and group 4 MDB. WNT-activated MDB is associated to monosomy 6, CTNNB1, DDX3X and TP53 mutations, beta-
catenin nuclear immunoexpression, and a better prognosis than SHH-activated MDB.
Discussion WNT-activated tumors account approximately for 10% of cases of MDBs, and are thought to arise from cells in the
dorsal brain stem/lower rhombic lip progenitor cells. SHH-activatedMDBmore frequently arises in the lateral hemispheres of the
cerebellum, and clinical outcome in this group is variable. TP53-mutant SHHactivated MDB usually shows the large cell/
anaplastic pattern, and can be related to MYCN amplification, GLI2 amplification and 17p loss. TP53-wildtype SHH-activated
MDB is more commonly of desmoplastic/nodular morphology, and can be related to PTCH1 deletion and 10q loss. Gene
expression and methylation profiling is the gold standard for defining molecular groups of MDB. In immunohistochemistry
assays, anti-GAB1 antibody expression is positive in tumors showing SHH pathway activation or PTCHmutation, while positive
immunoexpression for YAP1 antibody can be only found in WNT-activated and SHH-activated MDB.
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Introduction

Medulloblastoma (MDB) is defined as an embryonal
neuroepithelial tumor (WHO grade IV) arising more common-
ly in the cerebellum or dorsal brain stem of children. MDB is

composed of small round undifferentiated cells disposed in
densely packed groupings and exhibits mild to moderate nu-
clear pleomorphism and a high mitotic index (Fig. 1) [1–3].
WHO 2016 Classification of Tumors of the Central Nervous
System (CNS) has been classified MDB into four principal
groups: WNT-activated MDB, sonic hedgehog (SHH)-activat-
ed MDB, group 3 MDB, and group 4 MDB. These groups
were established from clustering analyses following tran-
scriptome, methylome profiling, and microRNA [1–4]. There
is significant association between these molecular classification
and clinical data and histopathological findings [3–7].

WNT-activated MDB accounts approximately for 10%
of cases of MDB and are thought to arise from cells in the
dorsal brain stem/lower rhombic lip progenitor cells [1, 4,
6, 7]. At microscopy, the great majority of WNT-activated
MDB has classic morphology, which denotes a low-risk
tumor. Very rare cases of WNT-activated MDB show
large cell/anaplastic pattern. Most common genetic alter-
ations of WNT-activated MDB are mutations of CTNNB1,
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DDX3X, and TP53 genes [1, 2, 5, 7, 8]. SHH-activated
MDB corresponds to a heterogeneous group that can be
subdivided in TP53-mutant and TP53-wildtype, and ac-
count around 30% of cases of MDB. All nodular/
desmoplastic MDB and MDB showing extensive
nodularity are SHH-activated MDB. SHH-activated
MDB looks to be derived from ATOH1-positive cerebel-
lar granule neuron precursor. A proportion of SHH-
activated MDB seems to arise from cerebellar granule
neuron cell precursor of the external granule cell layer/
cochlear nucleus [4, 6, 7, 9–13]. Non-WNT and non-
SHH groups 3 and 4 MDB are considered provisional
variants by WHO 2016, since these cases are not well
divided in molecular analyses/clinical laboratory assays
as WNT-activated/SHH-activated MDB [1, 3, 4, 6, 7,
14–16]. Proposed cell of origin of group 3 MDB is a
CD133+ neural stem cell and is usually MDB with
classic pattern (standard-risk tumor) or large cell/
anaplastic morphology high-risk tumor). Group 3 MDB
account for 20% of cases and are related to MYC am-
plification and isodicentric 17q [1, 3, 4, 6, 7, 14–16].
Group 4 MDB accounts for 40% of cases, is also relat-
ed to MYC amplification and isodicentric 17q, and can
compromise all age groups. Frequent genetic alterations
of group 4 MDB are KDM6A and GFI1/GFI1B struc-
tural variants and 11p deletion [4, 7, 10, 16–19].
Although not included in the WHO 2016 Classification of
Tumors of the Central Nervous System, immunohistochemi-
cal assays for MYC, Beta-catenin, and TP53 antibodies also
can be employed to determine a more integrated molecular/
histopathological diagnosis, and anti-GAB1 antibody expres-
sion is positive in tumors showing SHH pathway activation or
PTCH mutation [1, 4, 6, 7, 9, 19–21]. Table 1 demonstrates
general findings of WNT-activated/SHH-ativated MDB.

The role of WNT and SHH pathways
in the neoplastic transformation
of cerebellum/dorsal stem cells
and development of MDB

MDB is the most common CNS embryonal tumor of child-
hood and accounts for 25% of all intracranial neoplasms. Of
all patients with MDB, around 78% are aged inferior to
19 years [4, 6, 7, 22]. Most cases of MDB arise into the
cerebellar vermis or fourth ventricle as a gray circumscribed
mass that determine increased intracranial pressure. On CT/
MR, MDB is usually found as a solid, intensely contrast-
enhancement tumoral mass [4, 10, 19, 23, 24]. MDB has
potential to metastasize through the cerebrospinal fluid or
spread outside the CNS. Morphological variants of MDB in-
clude classic pattern (Fig. 2), desmoplastic/nodular MDB,
large cell/anaplastic MDB, and MDB with extensive
nodularity [1, 4, 6, 7, 10, 19, 25]. Rare cases of MDB show
areas with melanotic or myogenic differentiation [1, 4, 6, 7,
10, 19, 25]. Differential diagnosis includes high-grade small
cell gliomas, embryonal tumor with multilayered rosettes, and
atypical teratoid/rhabdoid tumors. Most MDB show positive
immunoexpression for neuronal differentiation such as
synaptophysin, NeuN, NCAM1, MAP2, neuron-specific eno-
lase, and class III beta-tubulin [4, 6, 7, 10, 22, 26]. Positive
expression for GFAP in immunohistochemistry evaluation is
found in approximately 10% of cases of MDB, and positivity
for NFP is rare. Rare cases of MDB show positive
immunoexpression for desmin, myogenin, HMB-45, and
melan-A [4, 6, 7, 10, 22, 26]. Almost all MDB show some
cytoplasmic immunoreactivity for beta-catenin. WNT-
activated MDB exhibits nuclear immunoreacivity for beta-
catenin in most cells. Nuclear SMARCB1 and SMARCA4 ex-
pression is found in all MDB variants, and the loss of

Fig. 1 Medulloblastoma: a small
cell neuroectodermal tumor of the
cerebellum, hematoxylin-eosin,
40×
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expression of one of these antibodies is a characteristic of
atypical teratoid/rhabdoid tumor [4, 6, 7, 22, 26, 27].
Almost all MDB cases are sporadic, but the tumor is
eventually associated to rare hereditary syndromes,
compromising less than 5% of patients. Familial cancer

syndromes featuring MDB include Nevoid basal-cell car-
cinoma syndrome (Gorlin syndrome), Turcot syndrome,
subtype 1 Fanconi anemia, Rubenstein-Taybi syndrome,
Coffin-Siris syndrome, and Li-Fraumeni syndrome [1, 4,
7, 8, 11, 15, 21, 27].

Table 1 WNT-activated and SHHactivated medulloblastomas: general findings

MEDULOBLASTOMA
WHO GRADE IV

LOW RISK TUMOR

CHILDHOOD

CTNNB1 MUTATION
DDX3X MUTATION
TP53 MUTATION

CLASSIC 
HISTOLOGY

WNT-ACTIVATED
GROUP 1 WHO 

2016

POSITIVE NUCLEAR 
IMMUNOEXPRESSION 

FOR BETA-CATENIN

INFANCY
ADULTHOOD

PTCH MUTATION
SMO MUTATION
SUFU MUTATION

DESMOPLASTIC / 
NODULAR 

HISTOLOGY

SHH-ACTIVATED, 
TP53-WILDTYPE

GROUP 2 WHO 2016

POSITIVE CYTOPLASMIC 
IMMUNOEXPRESSION 

FOR BETA-CATENIN

HIGH RISK TUMOR 

CHILHDOOD

TP53 MUTATION

LARGE CELL / 
ANAPLASTIC 
HISTOLOGY

SHH-ACTIVATED
TP53-MUTANT
GROUP 2 WHO 

2016

POSITVE CYTOPLASMIC 
IMMUNOEXPRESSION FOR 

BETA-CATENIN

Fig. 2 Classic Medulloblastoma:
A high grade densely cellular
tumor exhibiting a solid pattern
and prominent nuclear and
cellular atypias, hematoxylin-
eosin, 400×
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Gene expression and methylation profiling is the gold stan-
dard for defining molecular groups of MDB. WNT-activated
MDB (group 1 of WHO 2016 Classification of Tumors of the
Central Nervous System) is typically found in children be-
tween 7 and 14 years and has an excellent prognosis with
standard therapeutic approaches [1, 2, 4, 6, 7, 16, 19, 22,
28]. Nearly all WNT-activated MDB cases are classic tumors.
Frequently mutated genes in WNT-activated MDB are
CTNNB1 (90% of cases), TP53 (12.5% of cases), SMARCA4
(27% of cases), KMT2D (12.5% of cases), and DDX3X (50%
of cases). Around 85% MDB that are characterized by WNT
pathway activation show monosomy 6 and/or harbor a
CTNNB1 mutation in exon 3, and these genetic alterations
determine the positive immunoexpression for beta-catenin an-
tibodies in tumor cell nuclei [1, 2, 7, 12, 16, 22, 29, 30]. TP53
mutations in WNT-activated MDB are not related to a worse
prognosis, and the presence ofAPC germlinemutations rare in
this group of tumors [4, 5, 7–10, 22, 31]. WNT pathway is
fundamental for the normal development and organogenesis,
including neural cells. This pathway regulates intracellular
localization of the beta-catenin protein. Inactive WNT path-
way determines the association between beta-catenin with a
multimeric protein complex, which include AXIN1 protein,
glycogen synthase kinase-3-beta, and APC gene [4, 8, 9, 11,
16–18, 28, 31, 32]. With this ligation, beta-catenin is phos-
phorylated and targeted for degradation via ubiquitin-
dependent proteasomal pathways. Activation of WNT path-
way determines glycogen synthase kinase-3-beta inhibition,
destabilization of the APC/glycogen synthase kinase-3-beta/
AXIN1 complex, and accumulation of beta-catenin in the nu-
cleus. Translocation of beta-catenin to the nucleus leads to
upregulation of cyclin D1 and MYC (promitotic genes) [7–9,
11, 16, 18, 26, 28, 31, 32]. CTNNB1 mutation compromises
specifically the glycogen synthase kinase-3-beta phosphory-
lation domain of beta-catenin and promotes upregulation and
nuclear accumulation of aberrant TCF/LEF target genes and
tumorigenesis. CTNNB1 stimulates the producing of in-
hibitors such as Frizzled-related protein (sFRP) and
WNT inhibitor factor 1 (WIF-1). Positive nuclear beta-
catenin immunoexpression is strongly associated to
CTNNB1 mutations in more than 80% of cases of
MDB. The presence of APC mutations in sporadic cases
of MDB does not determine upregulation of the WNT
pathway [4, 7–9, 11, 16–18, 26, 28, 31, 32].

Clinical outcomes in SHH-activated MDB (group 2 of
WHO 2016 Classification of Tumors of the Central Nervous
System) are variable. SHH-activated MDB less frequently de-
termines metastatic lesions than group 3MDB [1, 5, 7, 22, 23,
28, 33]. Spread within the neuroaxis is a common feature of
SHH-activated and TP53mutantMDB. The analysis of PTHC
mutations in sporadic MDBs identified the SHH signaling
pathway in MDB tumorigenesis. Positive immunoexpression
for YAP1 antibody can be only found in WNT-activated and

SHH-activated MDB. Positive immunoexpression for GAB1
and YAP1 is widespread and strong in the great majority of
cases of non-desmoplastic SHH-activated MDB. In nodular/
desmoplastic MDB, strong expression for BAG1 and YAP1 is
found within internodular regions [4, 6, 7, 22, 26, 28, 34].
SHH-activatedMDBwith cytological anaplasia is more prone
to exhibit strong p53 expression, which is related to germline
TP53 mutations. Desmoplastic/nodular MDB shows patho-
logical activation of the SHH pathway, which is related to
PTCH1, SMO, SHH, GLI2, MYCN, and SUFU gene muta-
tions. Desmoplastic/nodular MDB correspond approximately
for 20% of cases of this tumor and are not related to isochro-
mosome 17q [1, 4, 6, 7, 10, 28, 31, 32, 35]. Activation of SHH
pathway can be evaluated byGAB1 and TNFRSF16 in immu-
nohistochemistry technique, in special in internodular areas [4,
8, 10, 11, 14, 26, 36]. MDB with extensive nodularity is usu-
ally SHH-activated tumor with an excellent prognosis, with
overall survival rates of 95%. Large cell/anaplastic MDB is
most frequent between SHH-activated and group 3 MDB, and
are associated to GLI2 and MYCN amplification, TP53 muta-
t ions , a mass ive genomic rear rangement cal led
chromothripsis, and a poor outcome with standard therapies.
Five-year progression-free survival for large cell/anaplastic
MDB is 30–40% [4, 5, 7, 9, 19, 31, 32, 37].

MDB, SHH-activated, and TP53 mutant are rare tumors
with poor prognosis that compromise patients between 4 and
17 years and are defined as embryonal tumors of the cerebel-
lum with evidence of SHH pathway activation and either
germline or somatic TP53 mutation [1, 4, 7, 12, 28, 30, 33].
SHH pathway activation in TP53-mutant tumors is related to
MYCN amplification, 17p loss, and GLI2, MYCN, or SHH
gene amplification, and mutations in PTCH, SUFU, and
SMO are uncommon. TP53-mutant SHH-activated MDB usu-
ally shows the large cell/anaplastic pattern. GLI2 amplifica-
tion denotes a high-risk tumor [1, 4, 7, 12, 28, 33].

MDB, SHH-activated, and TP53-wildtype are related to
germline or somatic mutations in the negative regulators
PTCH or SUFU and somatic mutations in SMO, and generally
compromise children aged four or less years [1, 7, 12, 22, 24,
25, 38]. MutationsDD3X orKMT2D genes, and amplification
of MYCN or MYCL also can be found between these lesions.
Some cases are associated to deletions in 9q and 14q chromo-
somes. TP53-wildtype SHH-activated MDB is more com-
monly of desmoplastic/nodular morphology, and is associated
toPTCH deletion and 10q loss, which denote a low-risk tumor
in infants [1, 4, 7, 12, 22, 24, 25, 37].

The SHH pathway plays a critical role in normal cerebellar
development. SHH ligand is secreted by Purkinje neurons,
which promote mitogenesis in external granular layer progen-
itor cells [4, 6, 10, 24, 28]. The response to SHH signal is
controlled by PTCH and SMO, which are transmembrane pro-
teins. PTCH suppresses SMO activity in the absence of SHH
ligand. If there is SHH stimulation, this inhibition is released
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and promotes SMO-induced transcriptional response, which is
regulated by GLI-1, GLI-2, and GLI-3, a family of transcrip-
tion factors. SUFU (suppressor of fused) cooperate with Slimb
(BTRCP, F-box protein) to inhibit GLI-1 mediated transcrip-
tion [1, 24, 25, 37, 39–42]. SHH-activated MDB (20% of
cases) arise through multiple alternative components, such
as PTCH mutations (around 10% of cases), SMO-activating
mutations (around 5% of cases), and SUFU mutations (0–
10% of cases) [1, 24–26, 37, 39–41]. Genetic alterations of
the SHH pathway determines an inadequate constitutive acti-
vation of the signaling cascade, downstream mitotic effects
regulated by overexpression of GLI proteins and PTCH gene
(a GLI-dependent target gene), and downstream MYCN, cy-
clin D1, and BMI-1 function. Common genetic alterations in
MDB also include MYC amplifications (5–15%), MYCN am-
plifications (5–15%), PIK3CA mutation (5%), CASP8 (35%),
HIC-1 (35%), and RASSF1A (90%) [1, 24, 26, 37, 39, 40, 43].

TP53 is a fundamental regulator of the cell cycle and apo-
ptosis. TP53 pathway includes p14ARF, a cell cycle inhibitor
that is expressed due to cellular stress and/or oncogene acti-
vation and is encoded by the INK4A/ARF locus. p14ARF sta-
bilizes p53 by sequesteringMDM2, thus leading cells to apo-
ptosis or cell cycle arrest [9, 12, 27, 36, 39]. Disruption of p53
pathway is related to p14ARF hypermethylation, deletion or
mutation, TP53 mutation, or amplification of MDM2 gene.
PIK3CA is a member of the family of phosphatidylinositol
3′-cinase catalytic subunits, and its mutations has been identi-
fied in approximately 05% of MDBs. Epigenetic tumor sup-
pressor gene inactivation in MDB is associated to RASSF1A
(ras association domain protein 1), CASP8 (caspase 8), and
HIC-1 genes [9, 12, 27, 36, 39, 44]. Table 2 exhibits the most
frequent genetic alterations and clinical aspects of WNT-acti-
vated/SHH-ativated MDB.

Final considerations and therapies targeting
WNT and/or SHH pathways in cases
of medullobastoma

Molecular indicators in MDB with favorable outcome include
WNT-activated tumors, monosomy 6, CTNNB1mutation, and
beta-catenin nuclear immunoexpression. Molecular indicators
indicative of poor outcome include MYC/MYCN amplifica-
tions, loss of chromosome 17p, and gain of chromosome 17q
[4, 6, 7, 30, 45, 46]. Patients who developed MDB can be
treated with a combination of surgery and/or radiotherapy/che-
motherapy regimens. Surgery is considered a standard part of
treatment for histologic confirmation of tumor type and as a
means to improve outcome [1, 42, 43, 45–48]. Standard-risk
medulloblastoma can be defined as total or near-total surgical
resection with less than or equal to 1.5 cm2 (measured on axial
plane) of residual tumor on early postoperative MRI, no CNS
metastasis on MRI, no tumor cells on the cytospin of lumbar
CSF, and no clinical evidence of extra-CNS metastasis. Low-
risk MDB includes the WNT subgroup, which exhibits ß-ca-
tenin mutation (mandatory testing), or ß-catenin nuclear
immuno-positivity by IHC (mandatory testing) ß-catenin nu-
clear immuno-positivity by IHC and monosomy 6 (optional
testing). MDB can be grouped as a low-risk tumor if the patient
has undergone total/near-total tumor resection. These cases can
receive conventionally fractionated radiotherapy (once a day)
with a dose of 54 Gy to the primary tumor and 18.0 Gy to the
craniospinal axis. Chemotherapy is also a standard element in
the treatment of MDB. Chemotherapy can be used to delay the
need for radiation therapy in 20 to 40% of children younger
than 3 to 4 years with non-disseminated MDB. Distinct che-
motherapeutic regimens have been used, including the use of
cisplatin, lomustine, vincristine, cyclophosphamide, etoposide,

Table 2 Medulloblastomas subtypes: most common molecular, histopathological, and clinical findings

Genetic 
profile

Most 
common 

histological 
pattern

Prognosis Age at 
presentation

Frequent genetic 
alterations

Proposed cell 
of origin

MDB, 
WNT-
activated

Classic Low-risk 
tumor

Childhood
CTNNB1 mutation
DDX3X mutation

TP53 mutation

Lower 
rhombic lip 
progenitor 

cell
MDB, 
SHH-
activated 
and TP53-
mutant

Large cell / 
Anaplastic

High-risk 
tumor

Childhood TP53 mutation
Cerebellar 

granule 
neuron cell 

precursors of  
external 

granule cell 
layer and 
cochlear 
nucleus

MDB, 
SHH-
activated 
and TP53-
wildtype

Desmoplastic 
Nodular

Low-risk 
tumor

Infancy
Adulthood

PTCH1 mutation
SMO mutation (adults)

SUFU mutations 
(Infants)

MDB medulloblastoma
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or even concomitant high-dose intravenous methotrexate and/
or intrathecal methotrexate or mafosfamide, and/or intraven-
tricular methotrexate [1, 42, 43, 45–49].

Prognosis in children is dependent on age, metastatic status
at presentation, postoperative Karnofsky Performance Scale
(KPS) score, molecular subtype, and completeness of surgical
resection. Histopathologic subclassification of MDBs can
modify therapeutic planning [4, 6, 7, 9, 19, 22, 30, 50, 51].
A higher prevalence of PTCH and SMO mutations in adult
SHH-activatedMDBs can predict responsiveness to inhibitors
of the receptor SMO, and SHH-inhibiting drugs like vismo-
degib that act downstream SMO activity are currently in de-
velopment. Investigation of target drugs able to suppress the
WNT pathway can be also future adjuvant therapeutic modal-
ity [7, 13, 19, 41, 43, 45, 47, 52].
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